Studie des VDMA zum Einsatz von GenAI im DACH-RaumWo Industrial AI echten Mehrwert schafft
15. April 2025
Artificial Intelligence (AI) entwickelt sich zur Schlüsselressource für die Wettbewerbsfähigkeit der deutschen Industrie. Doch wie weit ist die Branche wirklich? Laut einer aktuellen Bitkom-Befragung setzen bereits 42 Prozent der Industrieunternehmen des verarbeitenden Gewerbes in Deutschland AI in ihrer Produktion ein – ein weiteres Drittel (35 Prozent) plant entsprechende Projekte.
Ein ähnliches Bild ergibt sich aus einer zweiten Studie des VDMA, die speziell auf den Maschinen- und Anlagenbau und auf den Einsatz von GenAI im DACH-Raum blickt. Hier zeigt sich: 79 Prozent der Unternehmen nutzen bereits GenAI oder planen den Einsatz aktiv. 89 Prozent sehen in der Technologie einen entscheidenden Hebel für künftige Rentabilität.
Top-8-Einsatzszenarien für Industrial AI
Was bislang oft fehlt, ist ein klarer Fokus auf die wirklich wirksamen Anwendungen. Laut Bitkom geben 42 Prozent der Industrieunternehmen an, dass ihnen das nötige Know-how fehlt, um AI sinnvoll in bestehende Prozesse zu integrieren. Rund die Hälfte wartet zudem ab, welche Erfahrungen andere Unternehmen machen – ein deutliches Zeichen für Unsicherheit und fehlendes Vertrauen bei der praktischen Umsetzung.
Doch Industrial AI kann überall dort zum Einsatz kommen, wo Daten fließen, Entscheidungen getroffen werden und Prozesse ineinandergreifen – also entlang der gesamten industriellen Wertschöpfungskette. Die folgenden Einsatzszenarien zeigen, in welchen Bereichen Unternehmen durch den gezielten Einsatz von AI bereits heute konkrete wirtschaftliche Effekte erzielen – und wo die Hebel für zukünftige Wertschöpfung liegen.
- Datenqualität und -verständnis verbessern: Eine saubere, konsistente Datenbasis ist die Grundlage für jede AI-Anwendung. AI-Technologien erkennen und bereinigen fehlerhafte, doppelte oder unvollständige Datensätze – strukturiert wie unstrukturiert. Auf dieser Basis ermöglichen Analyse- und VisualisierungsTools ein tiefes Verständnis der Datenlandschaft. Muster, Anomalien und Schwachstellen lassen sich in Echtzeit erkennen, was Transparenz schafft und fundierte Entscheidungen über Abteilungen hinweg fördert.
- Bestandsoptimierung und Materialplanung: AI-gestützte Systeme analysieren historische Verbrauchsdaten und identifizieren saisonale Trends sowie Nachfrageschwankungen. So lassen sich Wiederbeschaffungszyklen und Bestellmengen besser planen – Überbestände und Engpässe werden reduziert. Das Ergebnis: niedrigere Lagerkosten, höhere Versorgungssicherheit und bessere Liquidität. Die emz Hanauer zum Beispiel setzt für die Reduktion überhöhter Lagerbestände auf die Proalpha Industrial AI Platform. Über 1.000 Teile wurden analysiert, Verbrauchsmuster erkannt und optimale Bestellzeitpunkte berechnet – mit messbarem Effekt auf Kapitalbindung und Versorgungssicherheit.
- Produktionsoptimierung: In der Fertigung erkennt Industrial AI ineffiziente Prozesse und Engpässe frühzeitig. Durch die Analyse von Maschinendaten, Auslastung und Taktzeiten lassen sich Durchlaufzeiten verkürzen und die Ressourcennutzung verbessern. AI-gestützte Dashboards konsolidieren relevante Produktionsdaten und ermöglichen es Mitarbeitenden, gezielt zu reagieren – für mehr Flexibilität, weniger Stillstand und eine gesteigerte Produktqualität.
- Liefer-Performance: Eine stabile Supply Chain ist nur so gut wie ihre Vorhersagbarkeit. Industrial AI hilft dabei, Störungen entlang der Lieferkette frühzeitig zu erkennen und Maßnahmen proaktiv einzuleiten. Die Systeme analysieren Echtzeitdaten aus Logistik, Beschaffung und Partnernetzwerken und unterstützen bei der Kapazitätsplanung. Das verbessert die Liefertreue, reduziert Verspätungen und stärkt die Resilienz der Lieferkette insgesamt
- Dynamisches Supply Chain Monitoring: AI analysiert in Echtzeit nicht nur interne Daten, sondern auch unstrukturierte externe Informationen – etwa aus Newsfeeds, Wetterdaten oder sozialen Medien. Dadurch lassen sich Nachfrageschwankungen, Transportprobleme oder geopolitische Risiken frühzeitig erkennen. Handlungsempfehlungen können automatisch in die Planung einfließen.
- Vorausschauende Wartung (Predictive Maintenance): Industrial AI kann anhand von Maschinendaten (zum Beispiel Temperaturen, Laufzeiten) frühzeitig Anzeichen für Verschleiß oder Ausfälle erkennen. So lassen sich Wartungen zustandsabhängig und effizient planen – Ausfallzeiten und ungeplante Stillstände werden minimiert, die Lebensdauer von Anlagen verlängert. Besonders in der Fertigung ist das ein entscheidender Produktivitätsfaktor.
- CO₂-Fußabdruck analysieren: Mit Industrial AI lassen sich Umweltwirkungen entlang der Wertschöpfungskette in Echtzeit analysieren und steuern – etwa durch die Auswertung von Energie- und Ressourcendaten. Unternehmen können so Emissionen sichtbar machen, Einsparpotenziale identifizieren und fundierte Nachhaltigkeitsentscheidungen treffen. Dazu zählen die datengestützte Berechnung von CO₂-Fußabdrücken, das Erkennen von Energieverbrauchern und die Optimierung einzelner Prozessschritte – von regulatorischer Sicherheit bis zur verbesserten Außenwirkung.
- Intelligenter Kundenservice: Standardanfragen wie Rücksendungen oder Lieferstatus lassen sich automatisiert bearbeiten, während Natural Language Processing (NLP) Kundenanliegen versteht, kategorisiert und an die richtigen Stellen weiterleitet. Die Bearbeitungszeit sinkt, die Präzision steigt. Zudem ermöglicht AI personalisierte Empfehlungen und proaktiven Service, der Kundenbedürfnisse frühzeitig erkennt – ein klarer Wettbewerbsvorteil in serviceintensiven Märkten.
Die aktuellen Studien von Bitkom und VDMA zeigen: Nur wer über erste Pilotprojekte hinausgeht und AI gezielt dort einsetzt, wo sie echten Mehrwert stiftet, wird langfristig profitieren. Industrial AI bietet genau diese Möglichkeit: Sie verknüpft Datenintelligenz mit operativer Exzellenz – von der Lieferkette über die Produktion bis hin zur Nachhaltigkeit.
Die hier dargestellten Anwendungsfelder zeigen, wie Unternehmen bereits heute produktiver, resilienter und zukunftsfähiger werden können. Entscheidend ist jetzt, ins Handeln zu kommen – gezielt, integriert und mit einem klaren Blick auf den konkreten Nutzen.
Christoph Kull ist President Business Applications bei Proalpha.